

SELECTED OPPORTUNITIES IN NUCLEIC ACID-BASED THERAPEUTICS

Hydrophobically modified antisense conjugates as New Chemical Entity to improve delivery and efficacy of nucleic acids (CHIM13035/13061)

Hydrophobically modified antisense conjugates as New Chemical Entity to improve delivery and efficacy of nucleic acids - CHIM13035/13061

Product factsheet POC In vivo

Technology:

Lipid conjugate antisense OligoNucleotides (LON) comprising a triple alkyl chain or a ketal group

Oligo—X R R M₁ M₂

Target:

Any antisense oligonucleotide or any nucleic acids

Application:

- for use to improve antisens oligonucleotide delivery and efficacy (alone or in combination with a drug)
- LONs self-assemble into micelles, which are prone to host drug molecules within their hydrophobic cores: for instance Paclitaxel
- ▶ POC: Lipid conjugate Antisens Oligonucleotide (L-ASO) are capable of inhibiting prostate cancer in vivo and have no toxicity in mice
 - The addition of a lipid chain on the 5' part of the antisense oligonucleotide enables inhibiting specifically "UD protein" protein, even in the absence of the transfection agent.
 - The specific inhibition of "UD protein" protein with LASO enabled inhibiting the growth of the PC-3 cells (Castration Resistant prostate cancer cell line).
 - Lipid modification strongly enhances the ability of ASO to reduce "UD protein" expression leading to a strong reduction of tumor progression in a murin xenograft model of Castration Resistant prostate cancer

Patent and publication:

- WO2014195754 A1 filed on 05 June 2013
- WO2014195755 A1 filed on 05 June 2013
- Karaki S et al. (2017) J Control Release, 258:1-9
- Aimé A et al. (2013) Bioconjugate Chem. 24 (8), pp 1345–1355;
- Patwa et al. (2011) Chem. Soc. Reviews, 40, 5844.....

HYDROPHOBICALLY MODIFIED ANTISENSE CONJUGATES AS NEW CHEMICAL ENTITY TO IMPROVE DELIVERY AND EFFICACY OF NUCLEIC ACIDS - CHIM13035/13061

Proof of concept POC In vivo

ALEXANDRE.FLORIMOND@INSERM-TRANSFERT.FR

