Inflammation is a prominent feature of ischemia-reperfusion injury (IRI) characterized by leukocyte infiltration and renal tubular injury. However, the signals that initiate these events remain poorly understood. The inventors identify the nuclear alarmin interleukin (IL)-33 as an initiation factor of tissue injury and also as a major amplification factor of the innate immune response triggered by experimental kidney ischemia-reperfusion in mice. In mice lacking IL-33, IRI is reduced, as attested by early decreased tubular cell injury, and by subsequent decreased infiltration of IFN-?/IL-17A-producing neutrophils and preservation of renal functions. These findings led the inventors to propose that endogenous IL-33 contributes to kidney IRI by promoting iNKT cell recruitment and cytokine production, resulting in neutrophil infiltration and activation at the injury site. Accordingly, the present invention relates to antagonists of IL-33 for use in methods for preventing ischemia reperfusion injury in an organ.